资源类型

期刊论文 418

会议视频 4

年份

2024 2

2023 20

2022 53

2021 40

2020 33

2019 38

2018 20

2017 19

2016 16

2015 6

2014 14

2013 28

2012 11

2011 18

2010 12

2009 23

2008 18

2007 15

2006 4

2005 4

展开 ︾

关键词

混凝土 16

三峡工程 7

三峡升船机 4

可持续性 3

桥面铺装 3

混凝土坝 3

混凝土面板堆石坝 3

三点弯曲梁 2

升船机 2

实时监控 2

承载力 2

施工技术 2

混凝土浇筑 2

碾压混凝土坝 2

组合梁 2

700 m跨径级别 1

ANSYS 1

D区 1

FRP 聚合物 1

展开 ︾

检索范围:

排序: 展示方式:

Structural characteristics of cement-stabilized soil bases with 3D finite element method

Yunfeng PENG, Yunlong HE,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 428-434 doi: 10.1007/s11709-009-0059-5

摘要: Cement-stabilized soil bases have been widely used in expressways due to its high strength, appropriate stiffness, good water resistance, and frost resistance. So far, the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much. In this paper, the 3D elastic-plastic finite element method (FEM) was used to analyze the mechanical behaviors and structural characteristics of cement-stabilized soil bases from construction to operation. The pavement filling and the traffic loading processes were simulated, and a contact model was used to simulate the contact behavior between each layer of the pavement. Considering the construction process, the structural characteristics and mechanical behaviors of cement-stabilized soil bases were studied under asphalt-concrete pavement conditions. Furthermore, the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed, and some suggestions were put forward for the design and construction of cement-stabilized soil bases.

关键词: different     strength     asphalt-concrete pavement     FEM     appropriate stiffness    

复合浇筑式钢桥面铺装车辙评估模型研究

章登精

《中国工程科学》 2013年 第15卷 第8期   页码 63-69

摘要:

根据南京长江第四大桥钢桥面铺装试验研究成果,对复合浇筑式沥青混合料性能进行了分析研究,通过系统分析动稳定度与温度、汽车轮载、车速及行车道间的关系,结合南京地区汽车超载情况的研究,提出并建立了复合浇筑式钢桥面铺装的车辙评估模型。

关键词: 复合浇筑式     钢桥面铺装     动态模量     当量轮次     车辙评估模型    

Laboratory and field evaluation of asphalt pavement surface friction resistance

Zhong WU, Chris ABADIE

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 372-381 doi: 10.1007/s11709-017-0463-1

摘要:

Pavement surface friction is a significant factor for driving safety and plays a critical role in reducing wet-pavement crashes. However, the current asphalt mixture design procedure does not directly consider friction as a requirement. The objective of this study was to develop a surface friction prediction model that can be used during a wearing course mixture design. To achieve the objective, an experimental study was conducted on the frictional characteristics of typical wearing course mixtures in Louisiana. Twelve wearing course mixtures including dense-graded and open-graded mixes with different combinations of aggregate sources were evaluated in laboratory using an accelerated polishing and testing procedure considering both micro- and macro texture properties. In addition, the surface frictional properties of asphalt mixtures were measured on twenty-two selected asphalt pavement sections using different in situ devices including Dynamic Friction Tester (DFT), Circular Texture Meter (CTM), and Lock-Wheel Skid Trailer (LWST). The results have led to develop a procedure for predicting pavement end-of-life skid resistance based on the aggregate blend polish stone value, gradation parameters, and traffic, which is suited in checking whether the selected aggregates in a wearing course mix design would meet field friction requirements under a certain design traffic polishing.

关键词: friction skid resistance     polishing     PSV     LWST     micro-texture     macro-texture    

浇筑式沥青混凝土性能影响因素研究

王宏畅,李国芬,章登精

《中国工程科学》 2013年 第15卷 第8期   页码 70-74

摘要:

浇筑式沥青混凝土具有较高的变形随从性而在钢桥面铺装上得到了很多的应用,为研究浇筑式沥青混凝土的性能影响因素,采用4种合成级配、3种沥青用量,系统评价了各因素对浇筑式沥青混凝土性能的影响。通过流动度试验和贯入度试验确定最佳含油量,由高温车辙试验和低温弯曲试验进行路用性能检验。研究表明,级配形式和沥青含油量变化对混合料的性能指标的影响较大,因此,实际施工时应严格控制混合料的级配和沥青用量。

关键词: 道路工程     钢桥面铺装     浇筑沥青混凝土     流动度     贯入度     车辙    

Development and road performance of clear asphalt with high transparency and adhesion

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 238-255 doi: 10.1007/s11709-022-0898-x

摘要: Clear asphalt (CA) currently used in light-colored asphalt mixtures (LCAM) exhibits poor transparency and adhesion. Therefore, a highly transparent CA (HCA) modified using a silane coupling agent (KH550) was prepared. Furthermore, LCAM was prepared by mixing CA and limestone aggregates. The properties of the HCA and ordinary CA (OCA) were characterized using conventional asphalt tests, optical tests, pull-off tests, ultraviolet aging tests, dynamic shear rheometry, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Whereas Marshall, moisture resistance, wheel tracking, trabecular bending, and British pendulum tests were employed for the LCAM. The transmittance and spectral reflectance of the HCA were 123.30 and 3.74 times greater than those of the OCA, respectively. The complex modulus and viscosity-aging index of the HCA were 48% and 53% less than those of the OCA, respectively. After modification with KH550, the Marshall stability ratio, tensile strength ratio, and flexural strain of the HCA-prepared LCAM increased by 12.92%, 25.06%, and 23.90%, respectively. However, the rutting resistance of the HCA-prepared LCAM was 14.3% less than that of the OCA-prepared LCAM. The comprehensive performances of the HCA and HCA-prepared LCAM were 49.2% and 10.3% greater than those of the OCA and OCA-prepared LCAM, respectively, indicating a high application value in the future.

关键词: light-colored asphalt pavement     orthogonal test     road performance     spectral reflectance     silane-coupling agent    

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 257-269 doi: 10.1007/s11709-017-0410-1

摘要: In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.

关键词: fatigue cracking     energy based     crack initiation     mechanistic approach     pavement analysis    

Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment

Huailei CHENG; Liping LIU; Lijun SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 267-280 doi: 10.1007/s11709-022-0811-7

摘要: Asphalt pavement is a key component of highway infrastructures in China and worldwide. In asphalt pavement design and condition assessment, the modulus of the asphalt mixture layer is a crucial parameter. However, this parameter varies between the laboratory and field loading modes (i.e., loading frequency, compressive or tensile loading pattern), due to the viscoelastic property and composite structure of the asphalt mixture. The present study proposes a comprehensive frequency-based approach to correlate the asphalt layer moduli obtained under two field and three laboratory loading modes. The field modes are vehicular and falling weight deflectometer (FWD) loading modes, and the laboratory ones are uniaxial compressive (UC), indirect tensile (IDT), and four-point bending (4PB) loading modes. The loading frequency is used as an intermediary parameter for correlating the asphalt layer moduli under different loading modes. The observations made at two field large-scale experimental pavements facilitate the correlation analysis. It is found that the moduli obtained via laboratory 4PB tests are pretty close to those of vehicular loading schemes, in contrast to those derived in UC, IDT, and FWD modes, which need to be adjusted. The corresponding adjustment factors are experimentally assessed. The applications of those adjustment factors are expected to ensure that the moduli measured under different loading modes are appropriately used in asphalt mixture pavement design and assessment.

关键词: asphalt mixture layer     stiffness modulus     loading mode     UC/4PB/IDT     FWD     frequency    

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 895-904 doi: 10.1007/s11709-021-0759-z

摘要: This research investigated a pavement system on steel bridge decks that use epoxy resin (EP) bonded ultra-high performance concrete (UHPC). Through FEM analysis and static and dynamic bending fatigue tests of the composite structure, the influences of the interface of the pavement layer, reinforcement, and different paving materials on the structural performance were compared and analyzed. The results show that the resin bonded UHPC pavement structure can reduce the weld strain in the steel plate by about 32% and the relative deflection between ribs by about 52% under standard axial load conditions compared to traditional pavements. The EP bonding layer can nearly double the drawing strength of the pavement interface from 1.3 MPa, and improve the bending resistance of the UHPC structure on steel bridge decks by about 50%; the bending resistance of reinforced UHPC structures is twice that of unreinforced UHPC structure, and the dynamic deflection of the UHPC pavement structure increases exponentially with increasing fatigue load. The fatigue life is about 1.2 × 107 cycles under a fixed force of 9 kN and a dynamic deflection of 0.35 mm, which meets the requirements for fatigue performance of pavements on steel bridge decks under traffic conditions of large flow and heavy load.

关键词: steel bridge deck pavement     ultra-high-performance concrete     epoxy resin     composite structure     bending fatigue performance    

Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay

Lingyun YOU, Zhanping YOU, Kezhen YAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 110-122 doi: 10.1007/s11709-018-0476-4

摘要: Asphalt concrete (AC) overlays placed over old asphalt pavement have become an alternative to repairing and reinforcing pavements. The strength contributed by the AC overlay is strongly influenced by the anisotropic properties of the pavement material. This study was conducted to analyze the influence of anisotropy, modulus gradient properties, and the condition of the AC overlay and old pavement contact plane on the mechanical behaviors of AC overlays, as well as to quantify the influence of the degree of anisotropy on the mechanical behaviors of AC overlay by a sensitivity analysis (SA). The mechanical behaviors of the AC overlay were numerically obtained using the three-dimensional finite element method with the aid of ABAQUS a commercial program. Variations in the AC overlay’s modulus as a function of temperature as well as the contact state between the AC overlay and AC layer were considered. The SA is based on standardized regression coefficients method. Comparing the mechanical behavior in terms of surface deflection, stress, and strain of the anisotropy model against those corresponding to the isotropic model under static loads show that the anisotropic properties had greater effects on the mechanical behavior of the AC overlay. In addition, the maximum shear stress in the AC overlay was the most significant output parameter affected by the degree of anisotropy. Therefore, future research concerning the reinforcement and repair of pavements should consider the anisotropic properties of the pavement materials.

关键词: asphalt concrete overlay     anisotropy     temperature gradients     modulus gradients     finite element simulation     sensitivity analysis    

废弃沥青材料的循环利用关键技术研究

杨林江

《中国工程科学》 2015年 第17卷 第1期   页码 56-61

摘要:

通过了解国内外沥青路面再生技术的发展现状,剖析沥青路面老化、再生机理,提出了废旧沥青混合料循环利用的技术,研发出一套行之有效的沥青路面热再生技术,以适应当今形势下的沥青路面再生、资源循环利用和环境保护的需要,为建设资源节约型、环境友好型社会而努力。

关键词: 沥青;路面;废旧料;循环利用;热再生技术;再生沥青混合料    

Temperature segregation and its impact on the quality and performance of asphalt pavements

Minkyum KIM, Pranjal PHALTANE, Louay N. MOHAMMAD, Mostafa ELSEIFI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 536-547 doi: 10.1007/s11709-017-0451-5

摘要: Temperature segregation is non-uniform temperature distributionacross the uncompacted asphalt mat during paving operations and mayhave detrimental effects on the quality and performance of asphaltpavements. However, many research studies conducted across the UShave reported mixed observations regarding its effects on the initialquality and long-term performance of asphalt pavements.?The objectiveof this study was to determine the effects of the temperature segregationon the density and mechanical properties of Louisiana asphalt mixtures.Seven asphalt rehabilitation projects across Louisiana were selected.A multi-sensor infrared bar (Pave-IR) system and a hand-held portablethermal camera were used to measure the temperature of asphalt mats.Field core samples were collected from various areas with varyingseverity levels of temperature segregation and tested for the density,fracture resistance (J ) by semi-circular bending(SCB), rut depth by wheel tracking, and dynamic modulus (|E*|) byindirect tension (IDT) devices.?Two distinctive patterns of non-uniformtemperature distribution were observed: a cyclic and irregular temperaturesegregations. Laboratory test results showed that highly temperaturesegregated asphalt pavements (i.e., temperature differentials ≥41.7°C) can have significantly lower densities and the mechanicalproperties than the non-segregated area, especially when the temperaturedifferentials are measured at compaction.

关键词: temperature segregation     temperature differential     pavement density     semi-circular bending     wheel tracking     dynamic modulus    

Development of combined transitional pavement structure for urban tram track-road grade crossings

《结构与土木工程前沿(英文)》   页码 1199-1210 doi: 10.1007/s11709-023-0949-y

摘要: The grade crossings and adjacent pavements of urban trams are generally subjected to complex load conditions and are susceptible to damage. Therefore, in this study, a novel pavement structure between tram tracks and roads constructed using polyurethane (PU) elastic concrete and ultra-high-performance concrete (UHPC), referred to as a track-road transitional pavement (TRTP), is proposed. Subsequently, its performance and feasibility are evaluated using experimental and numerical methods. First, the mechanical properties of the PU elastic concrete are evaluated. The performance of the proposed structure is investigated using a three-dimensional finite element model, where vehicle-induced dynamic and static loads are considered. The results show that PU elastic concrete and the proposed combined TRTP are applicable and functioned as intended. Additionally, the PU elastic concrete achieved sufficient performance. The recommended width of the TRTP is approximately 50 mm. Meanwhile, the application of UHPC under a PU elastic concrete layer significantly reduces vertical deformation. Results of numerical calculations confirmed the high structural performance and feasibility of the proposed TRTP. Finally, material performance standards are recommended to provide guidance for pavement design and the construction of tram-grade crossings in the future.

关键词: urban tram track     grade crossing     combined track-road transitional pavement     polyurethane elastic concrete     finite element method    

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 101-114 doi: 10.1007/s11709-014-0254-x

摘要: In this study, finite element (FE)-based primary pavement response models are employed for investigating the early-age deformation characteristics of jointed plain concrete pavements (JPCP) under environmental effects. The FE-based ISLAB (two-and-one-half-dimensional) and EverFE (three-dimensional) software were used to conduct the response analysis. Sensitivity analyses of input parameters used in ISLAB and EverFE were conducted based on field and laboratory test data collected from instrumented pavements on highway US-34 near Burlington, Iowa. Based on the combination of input parameters and equivalent temperatures established from preliminary studies, FE analyses were performed and compared with the field measurements. Comparisons between field measured and computed deformations showed that both FE programs could produce reasonably accurate estimates of actual slab deformations due to environmental effects using the equivalent temperature difference concept.

关键词: jointed plain concrete pavements (JPCP)     curling and warping     sensitivity analyses     rigid pavement analysis and design     finite element analysis (FEA)    

Investigation on the freeze-thaw damage to the jointed plain concrete pavement under different climate

Shuaicheng GUO, Qingli DAI, Jacob HILLER

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 227-238 doi: 10.1007/s11709-017-0426-6

摘要: Freeze-thaw damage is one of the main threats to the long time performance of the concrete pavement in the cold regions. This project aims to evaluate the influence of the freeze-thaw damages on pavement distresses under different climate conditions. Based on the Long-Term Pavement Performance (LTPP) data base, the freeze-thaw damage generated by four different kinds of climate conditions are considered in this project: wet-freeze, wet-non freeze, dry-freeze and dry-non freeze. The amount of the transverse crack and the joint spalling, along with the International Roughness Index ( ) are compared among the test sections located in these four different climate conditions. The back calculation with the Falling Weight Deflectometer (FWD) test results based on the ERES and the Estimation of Concrete Pavement Parameters (ECOPP) methods are conducted to obtain concrete slab elastic modulus and the subgrade -value. These two parameters both decrease with service time under freeze condition. Finally, MEPDG simulation is conducted to simulate the development with service year. These results showed the reasonable freeze-thaw damage development with pavement service life and under different climate conditions.

关键词: LTPP     elastic modulus     k-value     IRI     MEPDG    

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1379-1392 doi: 10.1007/s11709-019-0562-2

摘要: To date, very few researchers employed the Least Square Support Vector Machine (LSSVM) in predicting the resilient modulus ( ) of Unbound Granular Materials (UGMs). This paper focused on the development of a LSSVM model to predict the of recycled materials for pavement applications and comparison with other different models such as Regression, and Artificial Neural Network (ANN). Blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM) with proportions of 100/0, 90/10, 80/20, 70/30, 55/45, 40/60, 20/80, and 0/100 by the total aggregate mass were evaluated for use as UGMs. RCA/RCM materials were collected from dumps on the sides of roads around Mansoura city, Egypt. The investigated blends were evaluated experimentally by routine and advanced tests and the values were determined by Repeated Load Triaxial Test (RLTT). Regression, ANN, and LSSVM models were utilized and compared in predicting the of the investigated blends optimizing the best design model. Results showed that the ’s of the investigated RCA/RCM blends were generally increased with the decrease in RCM proportion. Statistical analyses were utilized for evaluating the performance of the developed models and the inputs sensitivity parameters. Eventually, the results approved that the LSSVM model can be used as a novel tool to estimate the of the investigated RCA/RCM blends.

关键词: Least Square Support Vector Machine     Artificial Neural Network     resilient modulus     Recycled Concrete Aggregate     Recycled Clay Masonry    

标题 作者 时间 类型 操作

Structural characteristics of cement-stabilized soil bases with 3D finite element method

Yunfeng PENG, Yunlong HE,

期刊论文

复合浇筑式钢桥面铺装车辙评估模型研究

章登精

期刊论文

Laboratory and field evaluation of asphalt pavement surface friction resistance

Zhong WU, Chris ABADIE

期刊论文

浇筑式沥青混凝土性能影响因素研究

王宏畅,李国芬,章登精

期刊论文

Development and road performance of clear asphalt with high transparency and adhesion

期刊论文

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

期刊论文

Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment

Huailei CHENG; Liping LIU; Lijun SUN

期刊论文

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

期刊论文

Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay

Lingyun YOU, Zhanping YOU, Kezhen YAN

期刊论文

废弃沥青材料的循环利用关键技术研究

杨林江

期刊论文

Temperature segregation and its impact on the quality and performance of asphalt pavements

Minkyum KIM, Pranjal PHALTANE, Louay N. MOHAMMAD, Mostafa ELSEIFI

期刊论文

Development of combined transitional pavement structure for urban tram track-road grade crossings

期刊论文

Finite element modeling of environmental effects on rigid pavement deformation

Sunghwan KIM,Halil CEYLAN,Kasthurirangan GOPALAKRISHNAN

期刊论文

Investigation on the freeze-thaw damage to the jointed plain concrete pavement under different climate

Shuaicheng GUO, Qingli DAI, Jacob HILLER

期刊论文

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

期刊论文